INGA & NAND Instrumentation at IUAC

1 5 1

S.Venkataramanan, IUAC

Co-authors

NAND: K.S.Golda, Hardev Singh* INGA: Arti Gupta, Rakesh Kumar, R.P.SIngh, Muralithar S, Ranjan Bhowmik

* Panjab University, Chandigarh

Design, Development & Implementation of

* Compact & High density Electronics * Front end Analog & Logic circuits * Pre-amplifiers, Shapers, TFA, CFD, TAC... * Replacement for Commercial units * Implementation for Large scale for Arrays * Knowledge share & transfer

Why Develop Electronics here?

- Conventional NIM & CAMAC DAS set-up
- General purpose modules (commercial) are complex, under utilised
- Power, real estate, unreliable operation...
- Cost for large array
- Expertise.. in order to repair / maintain
- Develop Electronics as per user specifications with Performance at par commercial units
- >200 Signals (INGA), >140 signals (NAND)

INGA_ Indian National Gamma Array

- 24 Nos. Array of HPGe Clovers
- Compton Suppressed (ACS)
- National Collaborative Project
- IUAC, UGC-DAE, TIFR, BARC, SINP, VECC
- High quality signal Processing required
- Optimum utilisation of infrastructure

INGA-Clover Electronics Module

INGA - Clover Electronics Module

- Features
- Double width NIM module
- 4 Modules in a NIM (200W) crate
- 4 Nos. Shaper cards..
- 5 Nos. Timing Filter Amplifiers + CFD cards
- 1 Anti coincidence logic card
- Motherboard..Interconnections high stability Control voltage generation, DC distribution..
- Time equaliser- Propagation delay equalisation
- 2 Layer PCB for easy duplication

Spectroscopy Amplifier

- 3µS, semi-Gaussian shaper (uniPolar)
- 3 gain ranges (2/4/6MeV) ~10V
- OL recovery
- Gated BLR (manual setting)
- Voltage controlled parameters are BLR LLTH, P/Z Adjustment
- PUR built-in Indication Logic
- Size: 4" x 1.5" x 1/2"

<u>Tested with HPGe Clover- ⁶⁰ Co,¹⁵² Eu</u> <u>~9Kcps</u>

Resolution: 1.3KeV @122KeV, 2.0KeV@1408KeV

Linearity: +/-100eV ie. ~0.01%

Shaper-Performances

Peak Shift: Better than 0.025%shift in 24 Hrs for 1408keV peak

TFA + CFD Card

- Optimised for HPGe Clover
- Fixed ζi, ζd constants
- Fixed gain 1V/MeV (-2.5V)
- BLR_ Robinson diode type
- Td: 25 nS, F=0.3
- LLTH : 1:100
- Tblock = 1.5μ S
- 2 Nos CFD (F_NIM)
- ACS type : Prompt only (500nS)

Anti-Coincidence Logic

- Raw Timing HPGe & ACS are processed for PTR
- Anti-coincidence between HPGe - AC Shield is indicated
- MASTER GATE Accepted
- OR_ Prompt, TOF logic generated
- Individual ADC GATE, PUR logic
- LED indication

ACLogic card, ADC Gate, Unipolar output

Status

- Successfully used with INGA campaign at VECC
- Part of Super clover detector at GSI, Germany
- Modified version have added features
- Mass produced with better exterior finishing for INGA at IUAC
- Know-how shared with collaborators
- Superior quality Shaper for LEPS being developed

NAND-National Array of Neutron Detectors

- ~30nos. Neutron detectors with LINAC
- 5"x5" NE213 Scintillation detector, PMT: XP-4512B (Philips)
- High quality gamma, neutron separation
- Zero-cross technique PSD
- Compact (1W-NIM), cost effective electronics

NAND Electronics Module

- 1 width NIM Module, 2 Channels
- Energy & Timing signals processed
- Shaper for Dynode signal- 'E'-Calibration
- C F Discriminator
- Pulse Shape Discrimination (Z/C method)
- GDG, Built-in TAC^{\$}, TOF Logic

^{- \$} BARC developed BMC 1522 (BEL) ASIC

Fig: Block Diagram of PSD Electronics_IUAC

Zero Cross Method

- * Large Dynamic range
- * Requires Timing electronics
- * Incorporates TOF measurements

Differentiation- Bipolar & Zero cross over Puls

Different ζ decay pulses cross ZERO LINE @ different times Optimum Pulse shape ~300nS (ζ S-Z/C) generate STOP for TAC

<u>TIME Reference:</u> CF Discriminator for START/GATE generation

TAC: Linear Spectrum corresponding to gamma & neutron

TO ADC PSD_COMM

PSD for Gamma and Neutron with different threshold

Table: FOM obtained with PSD electronics at different energy thresholds compared with commercial and other arrays

Eee	Neutron Wall	IUAC ^{\$}	DEMON*	Comm [#]
50 keV	-	1.4	-	1.27
110 keV	1.15	1.6	1.09	1.24
240 keV	1.54	1.82	-	1.65
300 keV	-	-	1.65	-
500 keV	1.84	1.89	-	1.75
1 MeV	2.1	2.06	2.05	1.91

* Demon: Charge Comparison method used

Canberra 2160A

\$ Calibration :120 keVee ~ 500 keV ηeutron energy

Reference: O.Skeppstedt et al NIM (A) 421 (1999) 531-541

Time of Flight with Plastic Detector (START)

Status

- Adopted for existing NAND array of ~30 Detectors
- Successfully implemented and used with Linac beam
- Modified module to be adopted for BARC - Si PAD detector

Acknowledgement

Sincere Thanks to all those individuals and firms supported, participated in the successful implementation of these projects

Thanks to the Organisers of this symposium for giving this opportunity & hospitality