CONTENTS

S.No).	Chapter	Particulars	Page No.
1.1	PEL	LETRO	DN	1
	1.1.1	OPER A	ATIONAL SUMMARY	1
		1.1.2	Maintenance and Development Activities	3
		1.1.3	Ion Source Activities	5
		1.1.4	Beam Pulsing System	6
		1.1.5	Low Energy Negative Ion Implanter Facility	7
	1.2	LINAC		9
		1.2.1	Status of the Superconducting Linac	9
		1.2.2	Developmental activities accomplished to improve the performance & reliability of SC Linac	10
		1.2.3	Superconducting Niobium Resonators	11
		1.2.3.1	Construction of Spare QWRs for Linac	11
		1.2.3.2	Heat Treatment of Fully Jacketed Resonators	11
		1.2.3.3	Performance of the Low Beta Niobium Resonator	12
		1.2.3.4	650 MHz Single Cell Low Beta Niobium Cavity	13
		1.2.3.5	Upgradation of SRF Infrastructure	13
	1.3	LOW E	ENERGY ION BEAM FACILITY	13
		1.3.1	Operation	13
		1.3.2	Maintenance	15
		1.3.3	Development	15
	1.4	PARAS AND R	6 (1.7 MV PELLETRON ACCELERATOR BS ENDSTATION)	15
		1.4.1	Operation	15
		1.4.2	Maintenance	16
		1.4.2.1	Ion Source Maintenance	16

		1422	1.7 MV Pelletron Accelerator and	
		1.7.2.2	Experimental Endstation Maintenance	17
	1.5	ACCEI	LERATOR MASS SPECTROMETRY	17
		1.5.1	14C AMS facility	17
		1.5.2	Clean chemistry laboratory activities	18
		1.5.3	Geochronology Facility at IUAC	18
	1.6	TABLI	ETOP ACCELERATORS	18
		1.6.1	Upgradation of 50 kV Tabletop Accelarator	18
		1.6.2	Development of 30 kV Tabletop Accelerator	19
2.	ACC	ELERA	ATOR AUGMENTATION PROGRAM	21
	nec			
	2.1	HIGH	CURRENT INJECTOR	21
		2.1.1	High Temperature Superconducting Ecris-Pkdelis and Low Energy Beam Transport (LEBT)	21
		2.1.2	Status of The Multi-Harmonic Buncher for the High Current Injector	25
		2.1.3	High Power RF Tests on Radio Frequency Quadrupole	26
		2.1.4	Drift Tube LINAC Resonator	27
		2.1.5	Travelling Wave Chopper	28
		2.1.6	48.5 MHz Spiral Buncher for MEBT Section of HCI	30
		2.1.7	Beam Transport System for HCI	31
		2.1.7.1	Beam optics of LEBT and MEBT section of HCI	31
		2.1.7.2	Installation of the Low Energy Beam Transport (LEBT) Section upto RFQ	32
		2.1.8	Instrumentation development	33
		2.1.8.1	Commissioning of HCI Multi-Harmonic Buncher (MHB) RF field Controller	33
		2.1.8.2	Maintenance of the Vacuum Tube based 48.5 MHz/120 kW RF amplifier	34
		2.1.8.3	LLRF control for High Current Injector RF Cavities	34

		2.1.9	Compact Diagnostic System for MEBT Section	35
		2.1.10 B	surn-In Test of 20 KW Solid State RF Amplifier at IUAC	36
2.2	DEVE	LOPME	NT OF A COMPACT FREE ELECTRON LASER	38
		2.2.1	Delhi Light Source based on Free Electron Laser principle	38
		2.2.1.2.3	The Photocathode deposition system	39
		2.2.1.2.4	RF Gun Laser system	40
		2.2.1.2.5	RF system for the electron gun (Copper cavity)	40
		2.2.1.2.6	The Undulator Magnet	40
		2.2.1.2.7	Beam line design of Phase-I	40
		2.2.1.2.8	B Design of Solenoid magnet for Delhi Light Source	41
		2.2.1.3	Present status of the Phase-I of Delhi Light Source	41
	2.3	ECR AN	ND MICROWAVE ION SOURCE DEVELOPMENTS	42
3.	RES	EARCH	I SUPPORT FACILITIES	47
	3.1	SUPPO	RT LABORATORIES	47
		3.1.1	High vacuum laboratory	47
		3.1.1.1	Installation of High Current Injector (HCI), Low Energy Beam Transport (LEBT) section up to RFQ	47
		3.1.1.2	Alignment Correction in HIRA beamline and HIRA Experimental set-up	48
		3.1.1.3	Maintenance Activities	49
		3.1.2	Cryogenics and Applied Superconductivity Laboratory	49
		3.1.2.1	LHe plant operation	49
		3.1.2.2	Electronics for Cryogenics, Applied Superconductivity and LINAC	50
		3.1.2.3	Applied Superconductivity & MRI	56
		3.1.3	Power Supplies Laboratory	58
		2121	Entrination of Dower Supplies for HCI Doom Transport Magnets	58
		3.1.3.1	radication of rower supplies for HCI Beam transport Magnets	50

3.1.3.3	Development of MOSFET based ±25A True Bipolar Power supply	59
3.1.3.4	Development of 500A/10V Power Supply for MRI Magnet Program	59
3.1.3.5	Design of a NIM based 3kV/3mA Power Supply	60
3.1.3.6	Development of fault current generator for AC characterization of HTS at 77K	60
3.1.3.7	Accelerator Magnet power supplies operation status report	60
3.1.3.8	Preventive Maintenance of Magnets and the Magnet power supplies	61
3.1.4	Detector Laboratory	61
3.1.4.1	Double arm TOF spectrometer	61
3.1.4.2	CsI detectors	62
3.1.4.3	Instrumentation	62
3.1.4.4	New detector systems	62
3.1.4.5	Activities in NUSTAR	62
3.1.5	Target Development Laboratory	63
3.1.6	RF & Electronics laboratory	66
3.1.6.1	Development of Charge Sensitive Pre-amplifier for INGA type clover detector	66
3.1.6.2	Multiplicity modules for NAND array	66
3.1.6.3	Development of electronics for charge particle detector array (CPDA)	66
3.1.6.4	MIDAS Digital Data Acquisition System (DAQ)	67
3.1.6.5	Spark Protection Boards for IUAC Control System	67
3.1.6.6	Broad band amplifier & Ultra-fast discriminators unit for capacitive pick-off of Linac	68
3.1.6.7	Development of 2kW, 48.5MHz Solid state power amplifier	68
3.1.6.8	Status of 400W, 97 MHz Solid State RF Power Amplifier for LINAC	69
3.1.6.9	Development of RF power read-back module	69
3.1.7	Health Physics	69

3.1.7.1	AERB Approval for different upcoming radiation facilities of IUAC (regarding radiation safety aspects)	70
3.1.7.2	Registration in E-LORA facility of AERB	71
3.1.7.3	Remote readout facility for Gamma area monitors	71
3.1.7.4	Luminescence study of γ -ray and C ⁵⁺ ion beam irradiated LiCaBO ₃ :Cu phosphor	72
3.1.7.5	A comparative investigation of Ce ³⁺ /Dy ³⁺ and Eu ²⁺ doped LiAlO ₂ phosphors for high dose radiation dosimetry: Explanation of defect recombination mechanism using PL, TL and EPR study	72
3.1.7.6	Study of thermoluminescence property of C ⁺ -ion doped anodized alumina	74
3.1.7.7	Optimization and Thermoluminescence Study of the Nanophosphor BaSO ₄ :Eu	75
3.1.7.8	Nanocrystalline Europium Doped Barium Sulphate as an Energy Independent Thermoluminescent Dosimeter	75
3.1.8	Data Support Laboratory	76
3.1.8.1	Development of Electronic Module	76
3.1.8.2	MIDAS GUI tested with VME DAQ	77
3.1.8.3	New Target Thickness measurements setup for Target Lab Facility	77
3.1.8.4	Data Acquisition program with Wiener CC-USB crate controller	77
3.1.8.5	PID based Detector Gas Flow Controller Design	78
3.1.8.6	Ethernet Enabled Stepper Motor Controller	78
3.1.8.7	Servicing and Maintenance	78
3.1.9	Computer and Communications	78
3.1.9.1	Local area networks and servers	78
3.1.9.2	High Performance Computing Facility	78
3.1.9.3	New generation Instrumentation & Acquisition System	78
UTILII	Y SYSTEMS	81
3.2.1	ELECTRICAL GROUP ACTIVITIES	81
3.2.1.1	Maintenance of electrical installations of substation, office blocks and residential colony	81

		3.2.1.2	Captive power installations	81
		3.2.1.3	Voltage stabilisers	82
		3.2.1.4	UPS Installations	82
		3.2.1.5	Power Factor Compensation	82
		3.2.1.6	Communication Equipments	82
		3.2.1.7	Fire detection and alarm system82	
		3.2.1.8	Electrical works for High Current Injector (BH-III)	82
		3.2.1.9	Roof top solar system for IUAC	82
		3.2.1.10	Compound lighting	82
		3.2.1.11	Electrical works for XRD and SEM facilities in LAB-2	83
		3.2.1.12	Renovation works	83
		3.2.1.13	Special dedicated grouping for Free Electron Laser Related Facility	83
		3.2.2	Air Conditioning, Water System and Cooling Equipments	83
		3.2.3	Mechanical Workshop (MG-III)	84
		3.2.4	Civil Works	86
		3.2.5	Compressed Air System and Material Handling Equipments	87
4.	EXPH	ERIME	NTAL FACILITIES IN BEAM HALL	88
	4.1	NEUTR GENER	ON DETECTOR ARRAY FACILITY (NAND) & AL PURPOSE SCATTERING CHAMBER (GPSC)	88
		4.1.1	Fission fragment angular distribution measurement	88
		4.1.2	Barrier distribution for ¹⁶ O+ ¹⁶⁹ Tm through quasi-elastic back-scattering	88
		4.1.3	Study of fusion-fission dynamics in mass 200 region	88
		4.1.4	Fission fragment mass distribution studies in Mercury region	89
		4.1.5	Measurement of mass gated neutron multiplicity in ¹⁹ F+ ²⁰⁸ Pb	89
	4.2	GAMM	A DETECTOR ARRAYS (GDA & INGA)	90
		4.2.1	Experiments in INGA	90
		4.2.2	Experiments in GDA	90

	4.2.3	Technical developments	90
	4.2.4	Data analysis	91
	4.2.5	Charge particle detector array	91
4.3	RECO	L MASS SPECTROMETERS	93
	4.3.1	Heavy Ion Reaction Analyzer (HIRA)	93
	4.3.2	HYbrid Recoil mass Analyzer (HYRA)	93
4.4	MATE	RIALS SCIENCE FACILITY	94
	4.4.1	Maintenance of Irradiation chambers in Beam Hall I	94
	4.4.2	Contact angle measurement setup	95
	4.4.3	Scanning Probe Microscope	95
	4.4.4	Field Emission Scanning Electron Microscope (FE-SEM)	95
	4.4.5	Status report on spectroscopy facilities	95
	4.4.6	Thermal evaporation and rf parallel plate diode sputtering systems	96
	4.4.7	A.C. Susceptibility Measurement Set-up	96
4.5	RADIA	ATION BIOLOGY EXPERIMENTAL FACILITY	98
4.6	ATOM	IC PHYSICS FACILITY	99
	4.6.1	A setup for studying the UV/Visible spectroscopy during ion atom collision	99
	4.6.2	Status of Multi Channel Doppler Tuned Spectroscopy	99
RES	EARCH	IACTIVITIES	101
NUCL	EAR PH	YSICS	101
	5.1.1	Lifetime measurements of ¹³⁹ Pm	101
	5.1.2	High spin structure of ¹²⁹ La	103
	5.1.3	High spin states in ²¹⁶ Fr	104
	5.1.4	Barrier distribution for ¹⁶ O+ ¹⁶⁹ Tm system through quasi-elastic back-scattering	106

5

5	5.1.5	Observation of fission-like events in ${}^{18}O+{}^{159}Tb$ system at energy ≈ 5.5 AMeV	107
5	5.1.6	Structure of ¹²⁷ Xe at high angular momenta	108
5	5.1.7	High spin structure of Rn isotopes and role of high-j orbitals	109
5	5.1.8	Observation of pairing of valence neutrons in ¹⁸ O using ²⁷ Al(¹⁸ O, ¹⁶ O n) ²⁸ Al	110
5	5.1.9	Multi-quasiparticle isomers below doubly-magic ²⁰⁸ Pb	111
5	5.1.10	No evidence of reduced collectivity in Coulomb excited Sn isotopes	112
5	5.1.11	Projectile structure effect on the onset and strength of incomplete fusion	114
5	5.1.12	Fission fragment mass distributions of nuclei populated by multi-nucleon transfer channels in ^{6,7} Li+ ²³⁸ U reaction	116
5	5.1.13	Investigating the effect of CELD in the fission of pre-actinides	117
5	5.1.14	Measurement of sub-barrier fusion cross sections for ¹⁹ F+ ¹⁸¹ Ta	118
5	5.1.15	Low-level nuclear structure study of ¹³² Ba using Coulomb excitation	120
I	MATER	IALS SCIENCE	123
5	5.2.1	Energy loss and straggling of swift heavy ions in varying thicknesses of Ni metal	124
5	5.2.2	Single Event Effects Testing of Microelectronic devices using Swift Heavy Ions	125
5	5.2.3	Study of MnAl thin films	126
5	5.2.4	Ion-Beam Induced Annealing in Graphene Oxide Film	127
5	5.2.5	Electrochemical performance of reduced graphene oxide – polypyrrole nanotubes nanocomposites and 85 MeV C ⁶⁺ ion irradiation	128
5	5.2.6	Tailoring magnetic properties of $ZnFe_2O_4$: Effect of 120 MeV Si ⁹⁺ ion	129
5	5.2.7	Effect of temperature in the radiation stability of yttria stabilized zirconia under swift heavy ions irradiation	130
5	5.2.8	Morphological modification of ZnO:Al thin film using swift heavy ion irradiation	130

5.2.9	Electronic structure modification and Fermi level shifting in Niobium doped anatase Titanium dioxide thin films	131
5.2.10	Carrier Transport Mechanism an ultra-sensitive Niobium Doped Titanium Dioxide/p-Si Heterojunction Photodiode under illumination by solar simulated light	132
5.2.11	Formation of charge neutrality level in highly conducting Cadmium oxide (CdO) thin films: role of doping and irradiation	132
5.2.12	Micro-Raman and electronic structure study on kinetics of electronic excitations induced monoclinic-to-tetragonal phase transition in zirconium oxide films	133
5.2.13	Band gap engineering and low temperature transport phenomenon in highly conducting antimony doped tin oxide thin films	133
5.2.14	Studies on Structure & Properties of Functional Oxides	134
5.2.15	Influence of electronic excitations on structural, optical and electrical properties of undoped and antimony doped tin oxide thin films	134
5.2.16	Swift Heavy Ion Irradiation Studies on YMnO ₃ Based Thin Film Devices	135
5.2.17	Luminescence studies of rare-earth doped AGd_2O_4 (A=Sr and Ba) phosphors irradiated with γ -rays, O^{6+} and Au^{8+} ions	136
5.2.18	Radiation damage and H/D trapping in ion irradiated Tungsten	137
5.2.19	Mixing study of Ni-Bi thin films using low energy ion beams	139
5.2.20	Nanopattering of Si (100) using ion beam	139
5.2.21	Amorphization studies of crystalline-Si with energetic Si ions	140
5.2.22	Study the effect of silicon negative ion implantation in gallium arsenide	141
5.2.23	Metal-semiconductor composite nanodot evolution on insulator surface by ion beam dewetting	142
5.2.24	Investigation of Electrical and Optical Properties of N and Li co-implanted ZnO samples	143
5.2.25	Fabrication of p–n junctions in ZnO nanorods by O ⁺ ion implantation	144
5.2.26	500 keV argon ion implantation induced structural modifications in Glass RPC detector materials: A Positron Lifetime study	145

	5.2.27	Superconducting $Ba(Fe,Co)_2As_2$ crystals and their surface damage by 1.5 MeV Ar-beam	146
	5.2.28	Study of thermoluminescence property of C+ion doped anodized alumina	148
	5.2.29	Tailoring Optical Properties of ITO thin films by Au implantation Followed by Gamma Irradiation	149
5.3	RADIA	TION BIOLOGY RESEARCH	150
	5.3.1	High LET radiation induced effects on signaling pathways in human prostate cancer cell line	150
	5.3.2	Investigation of DNA repair pathways and cross-talk between PARP-1 and p53 after carbon ion beam irradiation in cultured Human Cells	152
5.4	ATOM	IC PHYSICS RESEARCH	154
	5.4.1	Problem with theoretical calculation for charge state distributions for ion-solid collisions at low energies	154
	5.4.2	A parameterized model for Coulomb barrier height	155
	5.4.3	Line shape technique: A tool for impact parameter dependent investigations in ion-atom collisions	156
	5.4.4	Alignment and Orientation Effects in Ionisation of Small Molecules	158
5.5	ACCEL	ERATOR MASS SPECTROMETRY	159
	5.5.1	AMS ¹⁴ C dating of Deep sea marine core sediments from eastern part of Arabian Sea to reconstruct paleoclimate	159
	5.5.2	Developing chronological constraints tectonic and climate events in different parts of the Himalaya	159
	5.5.3	AMS Radiocarbon Dating of two sediment cores from the Great Rann of Kachchh	160
	5.5.4	Chronology development for the Late Quaternary vegetation and climate reconstruction of the Himalayan region	161

5.	ACADEMIC ACTIVITIES			
	6.1	BEAM	UTILIZATION BY USERS	162
		6.1.1	LEIBF (Positive & Negative Ion) Beam Time Utilization and Experiments performed (April, 2016 to March, 2017)	162
		6.1.2	Pelletron Beam Time Utilization and Experiments performed (April, 2016 to March, 2017)	163
		6.1.3	List of Users Family	165
	6.2	STUDE	NT PROGRAMMES	174
		6.2.1	IUAC Summer Programme 2016 for B.Sc. (Physics) Students	174
		6.2.2	M. Sc. Orientation Programme	174
		6.2.3	PhD Teaching Programme	175
		6.2.4	Teaching Laboratory Activities	175
	6.3	LIBRA	RYACTIVITIES	177
	6.4	ACAD	EMIC ACTIVITIES HELD IN 2016-17	178
	6.5	FORT	HCOMING EVENTS: 2017	179
	6.6	LIST C)F PH.D AWARDEES	181
	6.7	LIST C	OF PUBLICATIONS IN THE YEAR 2016-17	181
	6.8	LIST C	OF SEMINARS CONDUCTED IN THE YEAR 2016-17	195
	6.9	SCHO	OLS, WORKSHOPS, ACQUAINTANCE PROGRAMMMES,	

FOUNDATION DAY	& NATIONAL SCIENCE DAY	CELEBRATIONS 197

APPENDIX I	206
APPENDIX II	211
APPENDIX III	215