CONTENTS

S.NO.		CHAPTER PARTICULARS		Page No.	
1.	AC	CELER	ATOR		
	1.1	PELLE	TRON	1	
		1.1.1	Operational Summary	1	
		1.1.2	Maintenance and Development Activities	2	
		1.1.3	Ion Source Activities	4	
		1.1.4	Beam Pulsing System	4	
		1.1.5	Low Energy Negative Ion Implanter Facility	5	
		1.1.6	Utilization of Beam Runs Using 15 UD Pelletron Accelerator and LINAC from 1 st April 2019 to 31 st March 2020	7	
	1.2	SUPER	CONDUCTING LINEAR ACCELERATOR (SC LINAC)	9	
		1.2.1	Operational Details	9	
		1.2.2	Relocation of LINAC Control Room	10	
		1.2.3	Superconducting Niobium Resonators	11	
	1.3	PARAS	(1.7 MV Pelletron Accelerator and RBS Endstation)	13	
		1.3.1	Maintenance	13	
		1.3.1.1	Ion Source Maintenance	13	
		1.3.1.2	1.7 MV (5SDH-2) Pelletron Accelerator and Endstation Maintenan	nce 13	
	1.4	AMSA	ND GEOCHRONOLOGY FACILITIES	14	
		1.4.1	Accelerator Mass Spectrometry	14	
		1.4.1.1	Graphitization Laboratory	14	
		1.4.1.1.1	1 Graphitization of dissolved inorganic carbon (DIC) in ground water samples	14	
		1.4.1.2	Clean Chemistry lab for ¹⁰ Be and ²⁶ Al Sample Preparation	15	
		1.4.1.3	XCAMS facility	15	
		1.4.1.3.	1 AMS Measurements	15	
		1.4.1.3.2	2 Cathode Pressing Using Automated Electric Cathode Press	15	

1.4.1.3.3	3 Maintenance Activities of XCAMS	15
1.4.2	National Geochronology Facility	15
1.4.2.1	Femtosecond Laser Ablated High Resolution- Inductively Coupled Plasma Mass Spectrometer (Fs-LA-HR-ICPMS)	16
1.4.2.2	Quadrupole- Inductively Coupled Plasma Mass Spectrometry (Q-ICPMS)	17
1.4.2.3	High Resolution Secondary Ion Mass Spectrometer (HR-SIMS)	18
1.4.2.4	Field Emission Scanning Electron Microscope	19
1.4.2.5	Wave length Dispersive X-Ray fluorescence	20
1.4.2.6	X-Ray Diffraction	21
1.4.2.7	Laboratory magnetic barrier separator	21
1.4.2.8	Jaw Crusher, Vibratory disc mill and Sieve shaker	22
LOWE	NERGY ION BEAM FACILITY (LEIBF)	22
TABLE	TOPACCELERATORS	24
1.6.1	Usage of Tabletop Accelerators	24
1.6.2	Collaborations for Setting-up Similar Accelerators in Other Institutes	24

2. ACCELERATOR AUGMENTATION

1.5

1.6

2.1	HIGH	CURRENT INJECTOR	25
	2.1.1	High Temperature Superconducting ECRIS, PKDELIS and Low Energy Beam Transport (LEBT)	25
	2.1.2	Beam Tests	25
	2.1.3	DC and bunched beam, transmission studies through the RFQ	26
	2.1.4	Spiral Buncher Cavities : Design and Tests	27
	2.1.5	Development of Compact Beam Diagnostic System (CBDS) for High Current Injector (HCI)	30
2.2	COMN LASEI	AISSIONING OF A COMPACT FREE ELECTRON R FACILITY TO PRODUCE INTENSE TH _z RADIATION	30
	2.2.1	Introduction	31
	2.2.2	Development of Various Subsystems of DLS	31

2.2.2.1	The electron gun and the high power RF system	31
2.2.2.2	Fiber Laser system to produce electron beam from photocathode	31
2.2.2.3	Electron beam transport and electromagnets	32
2.2.2.4	Undulator	32
2.2.2.5	Progress of the Photocathode Deposition System	32
2.2.2.6	Beam line commissioning	33
2.2.3	Conclusion	33

3. RESEARCH SUPPORT FACILITIES

3.1	SUPPO	RT LABORATORIES	34
	3.1.1	High vacuum laboratory	34
	3.1.1.1	Installation of High Current Injector (HCI) components in beam hall III	34
	3.1.1.2	Relocation of GPSC experimental facility to 30° beam line	35
	3.1.1.3	Maintenance and Support Activities	36
	3.1.2	Cryogenics laboratory	36
	3.1.2.1	Cryogenic System for LINAC	36
	3.1.2.2	Activities on Applied Superconductivity	38
	3.1.3	Beam Transport System (BTS) Group	41
	3.1.3.1	Beam Transport System Operation Status Report	41
	3.1.3.2	Preventive Maintenance	41
	3.1.3.2.1	Preventive Maintenance Schedule of BTS Instruments	41
	3.1.3.2.2	2 Preventive Maintenance and Repair of Detector Bias HV Power Supplies:	42
	3.1.3.2.3	3 Academic Support Activities	43
	3.1.3.3	Development activities	43
	3.1.3.3.1	In-house development and installation of power supplies	43
	3.1.3.3.2	2 Low Level RF (LLRF) Controls for the HCI-RF cavities (RFQ, DTL & Spiral Buncher)	44
	3.1.3.3.3	3 RS232 Server Controller for Magnet Power supplies at IUAC	44
	3.1.4	Detector Laboratory	45

	3.1.5	Target Development Activities in IUAC	46
	3.1.6	RF & Electronics Laboratory	50
	3.1.7	Health Physics	52
	3.1.8	Data Support Laboratory	54
	3.1.9	Computer and Communications	56
	3.1.10	Electronics for Cryogenics of LINAC and IFR	57
	3.1.11	Low level RF & Beam bunching group (LLRF)	59
	3.1.12	High Voltage Power Supply Activities (Ion Source Group)	60
3.2	UTILI	FY SYSTEMS	62
	3.2.1	Electrical Group Activities	62
	3.2.2	Air conditioning, water system, cooling equipments, compressed air system, elevator, fire fighting system, supply of high purity gases to laboratories, cranes etc.	63
	3.2.3	Mechanical workshop (MG-III Gr.)	66
	3.2.4	Civil Engineering Group	67
EXI	PERIM	ENTAL FACILITIES IN BEAM HALL	
4.1	GENEI NATIC	RAL PURPOSE SCATTERING CHAMBER AND DNAL ARRAY OF NEUTRON DETECTORS	69
	4.1.1	List of experiments carried out in GPSC and NAND	69
	4.1.2	Development of multi-wire proportional counters for fission studies	70
	4.1.3	Testing of indigenous VME crate controller for NAND data acquisition system	70
	4.1.4	Measurement of neutron energy distribution for ²⁴¹ Am using NAND	71
4.2	GAMM	IA DETECTOR ARRAYS : GDA and INGA	72
4.3	RECO	IL MASS SPECTROMETERS	72
	4.3.1	Heavy Ion Reaction Analyzer	72
	4.3.2	HYbrid Recoil mass Analyzer	72

4

х

4.4	MATE	RIALS SCIENCE FACILITY	73
	4.4.1	Maintenance of Irradiation chamber in Beam Hall I	73
	4.4.2	Scanning Probe Microscope	73
	4.4.3	Tescan MIRA II FE-SEM with Oxford INCA PentaFETx3 EDS	74
	4.4.4	TEM Electron Microscope	74
	4.4.5	RF sputtering system, dc sputtering system and ball milling system	77
	4.4.6	Structure and Spectroscopy Lab	77
	4.4.7	Electrical transport and low temperature lab	78
	4.4.8	Contact angle set-up	78
	4.4.9	Optical Microscope	78
	4.4.10	UV Visible Spectrophotometer	78
4.5	RADIA	TION BIOLOGY FACILITY	78
4.6	ATOM	IC AND MOLECULAR PHYSICS FACILITIES	79
	4.6.1	Status of vacuum chamber at 75° beam line in LEIBF	79
	4.6.2	Developmental work and experiments conducted at LEIBF	80

5 RESEARCHACTIVITIES

5.1	NUCL	EAR PHYSICS	81
	5.1.1	Lifetime measurement study of octupole deformation in neutron deficient nuclei having A<120	81
	5.1.2	Search for octupole collectivity in ¹⁵² Gd	83
	5.1.3	Incomplete fusion studies in ¹⁴ N+ ¹⁷⁵ Lu system	83
	5.1.4	Study of anomalous light particle spectra in heavy-ion induced fusion reactions	85
	5.1.5	Fragmentation dynamics and neutron multiplicity measurements for super-heavy nuclei	86
	5.1.6	Spectroscopy of ⁶³ Zn and ⁶⁶ Ga	86
	5.1.7	Structure of positive parity states in ¹³⁹ Pm	88
	5.1.8	Signature of octupole correlations in ¹²⁶ Xe	89

5.1.9	Spin assignment of a dipole band in ¹⁰⁴ Ag	90
5.1.10	Study of shell closure effect through evaporation residue cross-sections measurement of ⁴⁸ Ti+ ^{140,142} Ce systems	91
5.1.11	High Spin Structure of ¹²⁹ La	92
5.1.12	Study of heavy ion induced fission fragment mass distribution for the decay of the ^{188,190} Hg compound nucleus	94
5.1.13	Level lifetime measurements of ¹³⁰ La through DSAM: Search for the chiral bands and shape co-existence	94
MATER	RIALS SCIENCE	96
5.2.1	Investigation of hybrid heterojunction diode parameters by <i>in-situ J-V</i> measurements during ion irradiation	97
5.2.2	Swift heavy ions irradiation effects on complex permittivity, permeability, and microwave-absorbing properties of $CoFe_2O_4/NG/PMMA$ and $Fe_3O_4/NG/PMMA$ nanocomposites	98
5.2.3	Structural & optical response of 100 MeV Au ⁺⁸ irradiated BiFeO ₃ thin films	100
5.2.4	Electronic excitation induced structural modifications in ceria stabilized zirconia $(Ce_{1-x}Zr_xO_2)a$	101
5.2.5	Crystal field analysis of Al ₂ O ₃ : Tm ³⁺ phosphor using ionoluminescence	103
5.2.6	Enhanced electrical properties of few layers MoS ₂ -PVA nanocomposite film via homogeneous dispersion and annealing effect induced by 80 MeV Carbon ⁶⁺ Swift Heavy Ion irradiation	104
5.2.7	Ionoluminescence Properties of $Ba_{1-x}MgAl_{10}O_{17}$: Mn_x^{2+} nanophosphors	105
5.2.8	Effect of Ag ion irradiation on structural properties of pure and Ag-doped $Ge_2Sb_2Te_5$ (GST) thin films	106
5.2.9	Photoluminescence and thermoluminescence response of swift heavy ion irradiated Dy^{3+} , Ho^{3+} doped Y_2O_3 materials for white light emission and dosimetry applications	106
5.2.10	Effects of ion beam irradiation on the structural and optical properties of potassium sodium niobate thin films	107
5.2.11	Depth and width analysis of crater for SHI ions irradiated SnO_2 and TiO_2 nanocomposite thin films	108

5.2

5.2.12	100 MeV Silicon ⁹⁺ swift heavy ion irradiation - Strategic defect annealing approach to enhance the electrical conductivity of few-layered MoS ₂ sheets - PVA nanocomposite film	109
5.2.13	The correlation between optical and elastic properties of swift heavy ion irradiated samples of chemically synthesized group II-VI semiconductor nanocrystals	109
5.2.14	Effect of the grain sizes on the swift heavy ion induced deformation in $Nd_2Zr_2O_7$	110
5.2.15	Surface Modification of Titania Nanotube Arrays using Low Energy Ion Beam in Nitrogen Environment for Photocatalytic and Sensing Applications (BTR No. 62503)	111
5.2.16	Effect of Fe Ion Implantation on the Thermoelectric Properties of CoSb ₃ Thin Films	112
5.2.17	Electrical and Thermoelectric Properties of N ion implanted SrTiO ₃ Thin Films	113
5.2.18	Structural and Optical Properties of Ni Implanted NiO Thin Films	115
5.2.19	Impact of Low Energy Fe-ion Implantation on the Physical Properties of Topological Insulator Sb ₂ Te ₃ Thin Films	116
5.2.20	Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes	118
5.2.21	Optical properties of Cobalt implanted Indium Phosphide and Gallium Phosphide	118
5.2.22	Impact of low energy ions beam irradiation on TiO_2/TiO_2 -Graphene Thin Films.	120
5.2.23	AFM Investigations of Ripple Pattern Formation on Si and Ge using 100KeV Ar Ion Beam: A Comparative Study	120
5.2.24	Defect mediated modification of structural, optical and magnetic properties of Xe ³⁺ ions irradiated GaN/sapphire films	121
5.2.25	Phase transformation and photoluminescence study of low energy keV Kr ⁵⁺ ions irradiated ZrO ₂ thin films	122
5.2.26	Electrical and optical properties of Zinc- and Strontium-Stannate thin films	124
5.2.27	Effect of annealing on the magnetic properties of FeCo thin films	124
5.2.28	Development of Thin film Solar cells: Experimental and Theoretical Approach	126

5.3	RADIA	TION BIOLOGY	127
	5.3.1	Study of DNA damage response pathway of A549 cells treated with carbon ion in presence of PARP-1 inhibitor	127
5.4	ACCEI	LERATOR MASS SPECTROMETRY	127
	5.4.1	Late Holocene Climate from the Central Ganga Plain, Sultanpur, Uttar Pradesh	127
	5.4.2	Reconstruction of the past climatic and sea level changes during the Late-Quaternary	128
	5.4.3	AMS radiocarbon dating of core sediment samples from Rann of Kachchh, Gujarat, western India	128
	5.4.4	Radiocarbon dating using AMS of samples collected from Salona Lake, Central Ganga Plain	129
	5.4.5	Report on Asurgarh Excavation, Odisha 2019-20	129
	5.4.6	Radiocarbon dating using AMS of sediment samples from Kinnaur and Dehradun districts, Northwest Himalaya, India	130
	5.4.7	Causes for the Decline of Indus Valley Civilization and Displacement in the period of 2350 BC – 1500 BC and those Impacts	131
	5.4.8	Cosmogenic radionuclide dating using ¹⁰ Be from Thangu, Sikkim, eastern Himalaya, India	132
	5.4.9	Radiocarbon dating using AMS of samples from Bundelkhand region of Central India.	133
	5.4.10	Appraisal of regional and local groundwater-surface water dynamics and residence time using ages determined by carbon-14 dating in parts of North-Western India	133
	5.4.11	Centennial and millennial scale climate and vegetation changes during Holocene in the Central-Western Himalaya	133
	5.4.12	Radiocarbon dating using AMS, XRF and XRD of samples from River Yamuna	134
	5.4.13	AMS ¹⁴ C Dating of samples from ocean and lake sediments for establishing chronology to see variability in the Indian monsoon system during the Holocene	135
	5.4.14	Chronology of sediments from Ladakh: Implications to Palaeoclimate reconstruction	135
	5.4.15	Radiocarbon dating using AMS of samples from Vaigai River Civilization Site	136

5.4.16	Paleoclimate study from southern Bay of Bengal using Forams as proxy	136
5.4.17	¹⁴ C dating of sediment core from Ponnaiyar River Basin- Implication to understanding the temporal variation in organic matter source	137
5.4.18	Benthic Foraminiferal Distribution and Oceanographic Changes in Krishna- Godavari Basin: Evidences from NGHP Hole 3B	137
5.4.19	Radiocarbon dating using AMS of samples from Gujarat Region	138
5.4.20	Radiocarbon Dating Using AMS of Samples	138
5.4.21	AMS dating of the Archaeological sites of Digaru – Kolong River Valley	139
5.4.22	AMS Dating of bones from the Late Pleistocene fossiliferous horizon in the Manjra Valley, District Latur, Maharashtra.	140
5.4.23	Cosmogenic Radionuclide dating of glacial deposits of Thajiwas valley of Kashmir Himalaya	141
5.4.24	Report On SEM Facility Used At Inter-University Accelerator Centre	141
5.4.25	Estimation of denudation rates using ¹⁰ Be/ ⁹ Be ratio around Chilka Lake and Anshupa Lake, Odisha coast	142
ATOM	IC PHYSICS	143
5.5.1	In search of a good nucleus-nucleus potential	143
5.5.2	Fabrication of thin targets for Atomic Physics experiment	144
RADIA	ATION PHYSICS	145
5.6.1	Investigating the Thermoluminescent Properties of KCaBO ₃ : Dy, KCaPO ₄ :Dy and Ca ₃ (PO ₄) ₂ :Dy	145
5.6.2	Thermoluminescence study of annealed alumina thin films for application in radiation dosimetry	146
5.6.3	Effect of Fuel on the Defect Structure of MgAl ₂ O ₄ Nanostructures	147

6. ACADEMIC ACTIVITIES

5.5

5.6

6.1	Beam Utilization by Users		
	6.1.1	LEIBF (Positive & Negative Ion) Beam Time Utilization and Experiments performed (April, 2019 to March, 2020)	148

	6.1.2	Pelletron Beam Time Utilization and Experiments performed (April, 2018 to March, 2019)	149
	6.1.3	List of Users Family	150
6.2	STUD	ENT PROGRAMME	159
	6.2.1	B.Sc(Physics) Summer Students Programme, June 2019	159
	6.2.2	M. Sc. Orientation Programme	159
	6.2.3	PhD Teaching Programme	159
	6.2.4	Teaching lab Activities	160
6.3	LIBRARY		
6.4	ACADEMIC ACTIVITIES HELD IN 2019 – 2020		
6.5	FORTHCOMING EVENTS: 2020 1		
6.6	LIST OF PH.D AWARDEE		
6.7	LIST	OF PUBLICATIONS IN THE YEAR 2019-20	163
6.8	LIST	OF SEMINARS CONDUCTED IN THE YEAR 2019-20	174
6.9	LIST	OF TECHNICAL REPORTS/MEMOS	175
6.10	SCHO PROG NATIO	OLS, WORKSHOPS, ACQUAINTANCE GRAMMMES, FOUNDATION DAY & ONAL SCIENCE DAY CELEBRATIONS	175

APPENDIX - I	186
APPENDIX-II	194
APPENDIX - III	197
APPENDIX - IV : AUDIT REPORT	201