
.

Phoenix Programmer's Manual

Ajith Kumar B.P
Inter-University Accelerator Centre

New Delhi 110 067

Version 1 (Jul, 2008)

1

Contents

1 Introduction 5
1.1 Phoenix Top Panel . 5

1.1.1 Things to be careful about when using Phoenix 7
1.2 Software Installation . 8
1.3 Communicating to Phoenix . 8

2 Python Library of Phoenix 10
2.1 Digital Inputs . 11

2.1.1 read_inputs . 11
2.2 Analog Comparator Input . 12

2.2.1 read_acomp . 12
2.3 Digital Outputs . 12

2.3.1 write_outputs . 12
2.4 Analog Output . 13

2.4.1 set_voltage . 13
2.4.2 set_dac . 13

2.5 Analog Inputs . 14
2.5.1 ADC Settings . 14

2.5.1.1 select_adc . 14
2.5.1.2 set_adc_size . 14

2.5.2 Single Reads . 15
2.5.2.1 get_voltage . 15
2.5.2.2 get_voltage_bip . 15
2.5.2.3 read_adc . 16
2.5.2.4 adc_input_period . 16

2.5.3 Block Reads . 17
2.5.3.1 read_block . 17
2.5.3.2 multi_read_block . 18

2.5.4 Block Read Channel Selection . 18
2.5.4.1 add_channel , del_channel . 19
2.5.4.2 get_chanmask . 19

2.5.5 Block Read Modi�ers . 20

2

2.5.5.1 set_adc_trig . 20
2.5.5.2 enable_wait_high, enable_wait_low 21
2.5.5.3 disable_wait . 21
2.5.5.4 enable_set_high, enable_set_low 22
2.5.5.5 enable_pulse_high, enable_pulse_low 22
2.5.5.6 disable_set . 23

2.6 Waveform Generation and Frequency Counter 23
2.6.1 Programmable Waveform Generator (PWG) 24

2.6.1.1 set_frequency . 24
2.6.2 Arbitrary Waveform Generation . 25

2.6.2.1 load_wavetable . 25
2.6.2.2 start_wave . 25
2.6.2.3 pulse_d0d1 . 26
2.6.2.4 stop_wave . 26

2.6.3 measure_frequency . 26
2.7 Passive Time Interval Measurements . 27

2.7.0.1 r2ftime, f2rtime . 27
2.7.0.2 r2rtime, f2ftime . 27
2.7.0.3 multi_r2rtime . 28
2.7.0.4 pendulum_period . 28

2.8 Active Time Interval Measurements . 28
2.8.0.5 set2rtime, set2ftime, clr2rtime, clr2ftime 29
2.8.0.6 pulse2rtime, pulse2ftime . 29
2.8.0.7 set_pulse_width . 30
2.8.0.8 set_pulse_polarity . 30

2.9 Histogram Generation . 30
2.9.1 start_hist . 31
2.9.2 stop_hist . 31
2.9.3 clear_hist . 31
2.9.4 read_hist . 31

2.10 Serial Periferal Interface (SPI) Modules . 32
2.10.1 Raw SPI Functions . 32

2.10.1.1 chip_enable , chip_enable_bar 33
2.10.1.2 chip_disable . 33
2.10.1.3 spi_push, spi_push_bar . 33
2.10.1.4 spi_pull, spi_pull_bar . 34

2.10.2 High Resolution ADC / DAC module . 34
2.10.2.1 hr_set_voltage . 34
2.10.2.2 hr_select_adc . 35
2.10.2.3 hr_get_voltage . 35

3

2.10.2.4 hr_select_range . 36
2.10.2.5 hr_internal_cal . 36
2.10.2.6 hr_external_cal . 36

2.10.3 Serial EEPROM . 37
2.10.3.1 seeprom_read . 37
2.10.3.2 seeprom_verify . 37

2.11 Plotting Functions . 38
2.11.1 plot . 38
2.11.2 plot_data . 38
2.11.3 window . 39
2.11.4 set_scale . 39
2.11.5 line . 40
2.11.6 remove_lines . 40
2.11.7 box . 41
2.11.8 remove_boxes . 41

2.12 Disk Writing . 41
2.12.1 save_data . 41

2.13 Plugin LCD Display . 42
2.13.0.1 init_LCD_display . 42
2.13.0.2 write_LCD . 42
2.13.0.3 message_LCD . 42

3 Programs for Simple Experiments 43
3.0.1 Capacitor Charging/Discharging . 43

4

Chapter 1

Introduction

Phoenix1 is an equipment that can be used for developing computer interfaced science experi-
ments without getting into the details of electronics or computer programming. For developing
experiments this is a middle path between the pushbuttonsystems and the developfromscratch

approach. Emphasis is on leveraging the power of personal computers for experiment control,
data acquisition and processing. Phoenix is developed by Inter-University Accelerator Centre
and the details can be found at www.iuac.res.in. IUAC is an autonomous research institute
of University Grants Commission, India, providing particle accelerator based research facilities
to the Universities. This manual explains the Python language library handling the communi-
cation between the PC and Phoenix. A brief description of Phoenix Hardware is given in the
beginning.

1.1 Phoenix Top Panel
On the top panel you will �nd several 2mm banana sockets with di�erent colors. Their functions
are brie�y explained below. The 9V DC input and the PC communication port (USB or Serial)
connector are on the left side. The slot on the front side is for connecting the alphanumeric
LCD display module. The connector for programming the ATmega16 micro-controller inside is
on the backside.

1. 5V OUT - This is a regulated 5V power supply that can be used for powering external cir-
cuits. It can deliver only up to 100mA current , which is derived from the 9V unregulated
DC supply from the adapter.

2. Digital outputs - four RED sockets at the lower left corner . The socket marked D0* is
bu�ered with a transistor; it can be used to drive 5V relay coils. The logic HIGH output
on D0 will be about 4.57V whereas on D1, D2, D3 it will be about 5.0V. D0 should not
be used in applications involving precise timing of less than a few milli seconds.

3. Digital inputs - four GREEN sockets at the lower left corner. Input to them should be
0V or 5V normally. It might sometimes be necessary to connect analog outputs swinging

1Physics with Homemade Equipment and Innovative Experiments.

5

Figure 1.1: Phoenix hardware.

between -5V to +5V to the digital inputs. In this case, you MUST feed the input through
a 1K resistor in series to protect it from damage.

4. ADC inputs - four GREEN sockets marked CH0 to CH3. The input voltage should be
between 0V and 5V. When you need to digitize -5V to +5V range signals, feed them
though the level shifting ampli�ers. They are marked as (-x+5)/2 on the panel and that
is what they do. Invert your signal, add 5Volts to it and divide the result by two.

5. PWG - Programmable Waveform Generator. This output can be programmed to generate
a 5V square wave. The frequency can be varied from 15 Hz to 4 MHz, but all the
intermediate frequencies are not possible.

6. DAC - 8 bit Digital to Analog Converter output. We really do not have a proper DAC
on Phoenix. It is made by �ltering a variable duty cycle pulse generated on the PWG
socket. Due to this you can only use either PWG or DAC at a time.

7. CMP - Analog Comparator negative input, the positive input is tied to the internal 1.23
V reference. In most of the cases, the software treats this like the Digital Inputs. CMP
input is capable of triggering a hardware interrupt of the micro-controller inside.

8. CNTR - Digital frequency counter (only for 0 to 5V pulses)

9. 1 mA CCS - Constant Current Source, BLUE Socket, mainly for Resistance Temperature
Detectors, RTD.

10. Two variable gain inverting ampli�ers, GREEN sockets marked IN and BLUE sockets
marked OUT with YELLOW sockets in between to insert resistors. The ampli�ers are

6

built using TL084 Op-Amps and have a certain o�set which has to be measured by
grounding the input and accounted for when making precise measurements.

11. One variable gain non-inverting ampli�er. This is located on the bottom right corner of
the front panel. The gain can be programmed by connecting appropriate resistors from
the Yellow socket to ground.

12. Two o�set ampli�ers to convert -5V to +5V signals to 0 to 5V signals. This is required
since our ADC can only take 0 to 5V input range. For digitizing signals swinging between
-5V to +5V we need to convert them �rst to 0 to 5V range. Input is GREEN and output
is BLUE.

To reduce the chances of feeding signals to output sockets by mistake the following Color
Convention is used

• GREEN - Inputs, digital or analog

• RED - Digital Outputs and the 5V regulated DC output

• BLUE - Analog Outputs

• YELLOW - Gain selection resistors

• BLACK - Ground connections

1.1.1 Things to be careful about when using Phoenix
1. The digital output pins can drive only 5mA. Don't connect any load less than 1K Ohm

to them.

2. Digital output D0 is transistor bu�ered and can provide 100 mA. Don't use it for timing
controls.

3. Digital and ADC inputs should not be negative or above 5V, ie. should be from 0 to 5V.

4. Variable gain ampli�er outputs should be connected to Digital Inputs only through a One
KOhm series resistor.

5. Ampli�er inputs should be within -5 to +5V range.

6. Output pins should not be tied together.

7. Do not draw more than 100mA current from the 5V regulated supply. Take necessary
protections against back emf when connecting inductive loads like motors or relay coils.

8. Forcibly Inserting Multi Meter probes with diameter more than 2 mm to the front panel
sockets will damage them.

9. And, don't pour co�ee into the sockets !

7

1.2 Software Installation
To access the Phoenix hardware, programs running on the PC should communicate to the
micro-controller inside Phoenix. This is done over RS232 or USB interface, depending on the
model used. The communication is handled by a Python library. User programs call simple
functions to access various features of Phoenix. In order to use Phoenix, your computer must
have the following software installed:

1. The Python interpreter.2

2. Pyserial module to access the RS232 port from Python.

3. PyUSB to access the USB ports.

If you are running from the Phoenix liveCD, all these things are available and ready to use.
If you are running some other GNU/Linux distribution you need to install the Pyserial and
PyUSB modules from the �les provided on the Phoenix CD, inside directory 'phoenix/software'.
The installation process is explained below.

#unzip pyserial-2.2.zip
#cd pyserial-2.2
#python setup.py build
#cd ..
#tar zxf pyusb-0.4.1.tar.gz
#cd pyusb-0.4.1
#python setup.py install

You need to copy the Phoenix library 'phm.py' from the directory 'phoenix/software/interface'
to the 'site-packages' directory inside the Python home directory 3. All the software required
to run Phoenix under MSWindows is located inside a directory named winPython on the CD.
Install all of them, by clicking on the icons.

GUI programs are available for most of the Phoenix based experiments. You need to read
this manual only if you want to design new experiments using Phoenix.

1.3 Communicating to Phoenix
You can use Python interpreter in two di�erent ways. Start the Python interpreter and type
the commands from it is one option. The '>>>' is the Python command prompt.

ajith@pc230:~$ python
2Strictly speaking, any program having the ability to talk to the USB /Serial port can access Phoenix. A C

library is also available on the CD but it is incomplete.
3On most systems this will be /usr/lib/python2.x, where x is the version number

8

Python 2.4.4 (#2, Apr 5 2007, 20:11:18) [GCC 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)]
on linux2 Type "help", "copyright", "credits" or "license" for more information.

>>> import phm
>>> p = phm.phm()
Perhaps an easier option is to type your code into �le using a Text Editor and invoke the

interpreter with your program name as the �rst argument:
ajith@pc230:~$ python mycode.py
Every Phoenix program should have the following two lines in the beginning
import phm
p = phm.phm()
The �rst line loads the Phoenix library called 'phm'. The second line invokes the function

phm() from from the library, that returns an object of a class named 'phm'. All the functions
to access Phoenix is inside this class. We call them by pre�xing the object name, for example

print p.read_inputs()

prints the status of the Digital Inputs.

9

Chapter 2

Python Library of Phoenix

This chapter explains the Python Libray functions for accessing the Phoenix hardware. They
are grouped into sections like Digital I/O, Analog I/O, Time interval measurement functions
etc. The functions belong to a class named 'phm' and will be invoked along with the object
name. Any phoenix program will have the two lines of code shown below, to import the library
and create an object using one class de�ned in the library.

import phm # import the phoenix library
p = phm.phm() # object of 'phm' class of 'phm' library

Phoenix library has online help. From the Python interpreter give the command 'help(phm)'
after importing the 'phm' library.

Documentation Conventions
We de�ne a function by its name, type of data returned by it, its arguments and the data
type of all the arguments. Python functions can have a variable argument list. For example a
function with two arguments can be called with a single argument if the second argument has
a default value. They can also have named arguments. These features are illustrated with the
an example function that accepts coordinate data in a list variable, and plots it.

None = plot(list data, int width=400, int height=300, Widget parent = None)

• This function returns the Python data type 'None'.

• The �rst argument is a list containing the coordinates to be plotted, which MUST be
provided.

• The remaining arguments are having default values. If the calling program does not
specify them, the default value is used.

• Second and third specify the dimensions of the plot window to be created.

10

• The last argument is the name of the parent window, inside which the new plot window
will be created.

We can invoke this function in many di�erent ways like:

• plot(data)

• plot(data,500,300) # width and height are speci�ed in that order

• plot(data, height = 500) # height only is speci�ed, skipping width

The following sections will use a format like

return_type = function_name (type arg1, ..., type argN = value, ...)

If no arguments are required, we will show and empty paranthesis. The main data types
in used are 'int', '�oat', and 'list'. None is the Python data type used if the function returns
nothing. The convention will be clear from the simple examples in the beginning. There are
only few functions that accepts variable number of arguments or named arguments. Most of
them have one or two arguments only.

2.1 Digital Inputs
There are four digital input sockets. You can connect them externally to Ground or 5 volts 1,
to make the voltage level HIGH or LOW. The software can read the voltage level present on
all sockets. It can also monitor the level transitions on these sockets with microsecond timing
resolution, a feature that will be explained later.

2.1.1 read_inputs
PROTOTYPE

int read_inputs()

DESCRIPTION
The function reurns an integer whose 4 LSBs represents the voltage level present at the

Digital Input Sockets.

USAGE

data = p.read_inputs()

EXAMPLES

print p.read_inputs()

will print the number 15 (1111bin) if nothing is connected to the sockets, they are all internally
pulled up to a HIGH. Invoking the same function with D0 grounded will return 14.

1They are TTL inputs. Any voltage less than 0.8V is taken as a LOW and greater than 2V is taken as a
HIGH.

11

2.2 Analog Comparator Input
The socket marked as CMP behaves in a manner similar to that of Digital Inputs. In most
of the cases it can be considered as the �fth digital input. Advanced features of CMP will be
discussed later.

2.2.1 read_acomp
PROTOTYPE

int read_acomp()

DESCRIPTION
The function reurns one if the CMP input is less that 1.23 volts, otherwise it returns zero.

USAGE

level = p.read_acomp()

EXAMPLES

print p.read_acomp()

2.3 Digital Outputs
There are four digital output sockets. You can set the voltage level on them to zero or �ve volts
using software. The �rst Digital Output, D0∗, is transistor bu�ered and capable of driving up
to 100 mA current, it should not be used for timing applications. All other outputs can provide
only up to 5 mA. If you connect LEDs to them, use a 1KΩresistor in series with the LED for
current limiting.

2.3.1 write_outputs
PROTOTYPE

None write_outputs(int)

DESCRIPTION
The function takes an integer as argument whose 4 LSBs are used for setting the voltage

level on the four Digital Output sockets.

USAGE

p.write_outputs(15)

12

EXAMPLES

p.write_outputs(15)
p.write_outputs(8)

The �rst line will make all 4 digital outputs HIGH (15 is 1111binary), the second one will make
D3 HIGH and all other LOW. Measure the outputs with a voltmeter or by connecting an LED
from the sockets to ground with a 1KΩresistor in series.

2.4 Analog Output
Phoenix has one Programmable Voltage Source, marked as DAC. The voltage level on the DAC
socket can be set from 0 to 5V. The resolution is only 8 bits, the voltage will change in about
19 mV steps. The DAC is implemented by controlling the duty cycle of a 31.25 KHz Pulse
Width Modulated waveform generated on PWG socket. The PWG is internally connected to
the DAC socket through a low pass �lter. Due to this reason, PWG and DAC cannot be used
at the same time. The quality of the DC output on DAC output can be improved by adding
external �lters.

2.4.1 set_voltage
PROTOTYPE

None set_voltage(float mV)

DESCRIPTION
Set the output voltage of the DAC. The value of mV should be from 0 to 5000. It represents

voltage in milli volts.

USAGE

p.set_voltage(2000) # Sets 2 volts on DAC socket

2.4.2 set_dac
PROTOTYPE

None set_dac(int k)

DESCRIPTION
Write a one byte value to the 8 bit DAC. The DAC output varies from 0 to 5000 mV.

Writing a 0 to the DAC results in an output voltage of 0 and writing a 255 results in an output
voltage of 5V. Intermediate values give appropriately scaled outputs. Almost always, you will
not have to use this function in your code - the set_voltage function is much more convenient.

USAGE

p.set_dac(127) # set DAC to nearly 2.5 volts

13

2.5 Analog Inputs
Phoenix has four channels of analog inputs, CH0, CH1, CH2 and CH3. The input voltage
MUST be within the 0V to 5V range. The input voltage can be digitized with 10 bit resolution,
requiring 2 bytes to store the data. It is also possible to ignore the two LSBs and return a 1
byte data.

Phoenix supports two modes of digitizing the analog voltage present at the input sockets,
single conversion and block mode conversion. In the Single conversion mode, the voltage is
measured only once and the result is returned. In the block mode, more than one measure-
ments are done during a single function call. The calling program can specify the number of
measurements to be done and the time interval between two consecutive measurements. Block
reads are necessary for digitizing waveforms.

2.5.1 ADC Settings
2.5.1.1 select_adc

PROTOTYPE

None select_adc(int chan)

DESCRIPTION
Selects one from the four channels available. The voltage at this analog input will be

digitized during the subsequent calls to measure the voltage. The channel number ranges from
0 to 3.

USAGE

select_adc(0) # selects the first channel

2.5.1.2 set_adc_size

PROTOTYPE

None set_adc_size(int size)

DESCRIPTION
The Phoenix ADC resolution can be set to 8 or 10 bits. Calling this function with argument

1 will choose 8 bits, an argument of 2 chooses 10 bits. It is set to 8 bits on powering. Programs
using ADC must call this function once after a power up. If a program sets the data size to 2
bytes and Phoenix is reset after that, a mismatch will occur resulting in communication error
since the default is 1 byte at the micro-controller side.

USAGE

p.set_adc_size(1) #set the resolution to 8 bits
p.set_adc_size(2) #set it to 10 bits

14

2.5.2 Single Reads
2.5.2.1 get_voltage

PROTOTYPE

tuple get_voltage()

DESCRIPTION
Reads the analog voltage on the current ADC channel and returns a tuple. First element

of the tuple is the PC time-stamp and the second element is the voltage in milli-volts. The
timestamp is required for plotting slowly varying parameters as a function of time.

This function was earlier called zero_to_5000().

USAGE

res = p.get_voltage()

EXAMPLES
Connect DAC to CH0 using a piece of wire and run the following program several times.

The result will be �uctuating by around 20 mV. Connect a 1KΩ resistor from DAC to CH0
and a 1 uF capacitor from CH0 to GND. Run the program again several times to observe the
di�erence.2

p.set_voltage(3000)
p.select_adc(0)
p.set_adc_size(2)
print p.get_voltage()[1] # print voltage only

2.5.2.2 get_voltage_bip

PROTOTYPE

tuple get_voltage_bip()

DESCRIPTION
The Phoenix ADC input accepts only voltages within the 0 to 5V range. In many ex-

periments the sensors may generate voltages going to negative values also. The level shift-
ing ampli�ers, (-x+5)/2 , convert a -5V to +5V range signal into a 0 to 5V signal. Calling
get_voltage_bip() will return the voltage given to the input of the level shifter, so that the
user program need not calculate it. This function was earlier called minus5000_to_5000().

USAGE

res = p.get_voltage_bip() # read a bipolar signal
2The ripple on the DAC output is reduced by the extra RC �lter, resulting in a better DC output.

15

EXAMPLES
Connect the input of a level shifter to GND, output to CH0 and run the following program.

The third line will print around 2500 mV and the fourth one around zero millivolts. You
may �nd the values di�ering by around 10 mV, that is the level of accuracy you can get from
the ADC used. This can be corrected to some extend by calibrating the ADCs using known
voltages.

p.set_adc_size(2)
p.select_adc(0)
print p.get_voltage()[1]
print p.get_voltage_bip()[1]

2.5.2.3 read_adc

PROTOTYPE

tuple read_adc()

DESCRIPTION
Digitizes the analog voltage on the current ADC channel (set by the `select_adc' call) and

returns a number in the range 0-255 or 0-1023 (depending on the ADC sample size set by the
`set_adc_size' function) and the system time stamp as a tuple. It is easier to use get_voltage()

USAGE

print p.read_adc()

2.5.2.4 adc_input_period

PROTOTYPE

int adc_input_period(int chan)

DESCRIPTION
The period of a voltage waveform, in microseconds, on any of the ADC inputs can be

measured by this function. This works �ne for square wave inputs with amplitude greater than
1.5 volts. The ADC input is internally connected to the Analog Comparator for doing this
measurement.

USAGE

print p.adc_input_period(0)

16

2.5.3 Block Reads
To capture waveforms having frequency more than several Hertz, we need to digitize several
hundred points with a single function call. The time interval between consecutive digitizations
must be kept same. The Block Read functions are used for capturing waveforms. There are
several other supporting functions in this group for setting various parameters related to block
mode digitization.

2.5.3.1 read_block

PROTOTYPE

list read_block(int np, int delay, int bipolar = 0)

DESCRIPTION
The �rst argument is the number of voltage measurements to be done and the second is the

time interval between them in microseconds. The third argument is used for converting the
raw data to the voltage value. If you are feeding the signal through the level shifters, use 1 as
the third argument. If you do not use the third argument, it is taken as zero by default.

The channel to digitized and the datasize are set by the select_adc() and set_adc_size()
functions. The maximum number of samples is limited by the size of the bu�er inside the
microcontroller. The bu�er size is 800 bytes3, means the maximum is 800 with 8 bit size and
400 with 10 bit size.

The return value is a list containing tuples like [(t1,v1), (t2,v2).....] , where each tuple
contains the time and voltage values of one sample. In case of any error a single element list
containing the error message is returned. It is the calling programs responsibility to check this
before trying to use the returned value.

USAGE

data = p.read_block(100, 20, 1)
data = p.read_block(100,20)

EXAMPLES
Connect PWG to CH0 and run the following program.

p.select_adc(0)
p.set_adc_size(2)
p.set_frequency(1000)
v = p.read_block(400, 20)
if len(v) == 1:

print v #error message
p.plot(v)

3The bu�ersize for the ATmega32 version of Phoenix is 1800 bytes

17

2.5.3.2 multi_read_block

PROTOTYPE

list multi_read_block(int np, int delay, int bipolar = 0)

DESCRIPTION
This call is similar to read_block() but capable of digitizing data from multiple channels.

The channels to be digitized are set by add_channel() and del_channel() functions, explained
below. The channel selected by select_adc() function has no e�ect on multi_read_block(). The
arguments have the same meaning as in read_block(). The size of each item in the returned
list is decided by the number of active channels. Some example results are shown below.

All channels added : [[t1, a1, b1, c1, d1], [t2, a2, b2, c2, d2],]
Channels 0 and 1 : [[t1, a1, b1], [t2, a2, b2],]
Channels 2 and 3 : [[t1, a1, b1], [t2, a2, b2],]
It should be noted that the returned list does not have information about the active channels.

The calling program should get this from the value of channel mask. With all channels selected,
the maximum number of samples is 200 with 1 byte resolution and 100 with 2 byte resolution,
decided by the 800 byte bu�ersize. In case of any error a single element list containing the error
message is returned. It is the calling programs responsibility to check this before trying to use
the returned value.

USAGE

v = p.multi_read_block(100, 10)

EXAMPLES

p.add_channel(1)
p.set_adc_size(1)
v = p.multi_read_block(5, 10)
print v

If you run this code after powering the micro-controller, the result will have data from CH0
and CH1, since CH0 is selected by default. Each element in the list will have three values, time
and two voltages. You can explicitly deselect CH0 by calling del_channel(0).

2.5.4 Block Read Channel Selection
The �rmware inside Phoenix keeps a 4 bit channel mask, whose bits can be set by add_channel()
and cleared by del_channel(). The channel mask decides which all channels will be read during
a multi_read_block() call. For example, if the channel mask is 5 (0101binary), CH0 and CH2
will be read. The function get_chanmask() returns the current values of the channel mask.
The number of elements in each item of the list returned by multi_read_block() depends on
the number of currently active channels. If all the channels are set, each item will have �ve
elements, where the �rst one is the time value and the remaining four are the voltage levels at
the four channels.

18

2.5.4.1 add_channel , del_channel

PROTOTYPE

None add_channel(int chan)
None del_channel(int chan)

DESCRIPTION
add_channel() sets the speci�ed bit in the Channel Mask and del_channel() clears it.

USAGE

p.add_channel(1)
p.del_channel(3)

EXAMPLES

for k in range(4):
p.del_channel(k) # deselect all channels

p.add_channel(3) # Add the fourth channel
v = p.multi_read_block(100, 10, 0)
p.plot(v)

2.5.4.2 get_chanmask

PROTOTYPE

int get_chanmask()

DESCRIPTION
This function returns the value of the current channel mask. The four LSBs of the returned

integer contains the selected channel information. This call is used by programs like CRO to
interpret the data returned by multi_read_block() function.

USAGE

mask = p.get_chanmask()

EXAMPLES

print p.get_chanmask()

19

2.5.5 Block Read Modi�ers
The behavior of block reads calls can be controlled in several ways to enhance their �exibility.
They can be made to start only when the input is between some speci�ed limits, this feature
is essential for getting a stable trace for CRO applications.

You can also synchronize the beginning of digitization process with some external event.
Digitization is made to wait for speci�ed level changes on a digital input. This feature is useful
for digitizing transient waveforms. The synchronizing signal is derived from the waveform itself
and applied to a digital input.

It is also possible to SET, CLEAR or PULSE one of the digital outputs just before starting
the digitization process. The control functions only changes the settings at the micro-controller
end, the actions are visible only when a block read call is made.

2.5.5.1 set_adc_trig

PROTOTYPE

None set_adc_trig(�oat lower, �oat upper, int shifted = 0)

DESCRIPTION
A CRO application typically reads a number of samples from the ADC in bulk and plots

it on to the screen; this process is repeated. If every time we start digitizing from a di�erent
part of the signal (say a periodic sine wave), the display will not remain static and will tend to
`run around'. The solution is to �x the starting point for each scan. The set_adc_trig() tells
the read block calls to start the action only when the input voltage is changing from lower to
upper. The trigger levels are speci�ed in millivolts. The third argument is 1 when the level
shifters are used. If you omit that argument, zero is taken by default. This function assumes
that the ADC is set to 8 bit resolution.

USAGE

p.set_adc_trig(2000, 2200,0)
p.set_adc_trig(-200, 200, 1)

EXAMPLE

p.set_frequency(500)
p.select_adc(0)
p.set_adc_size(1)
p.set_adc_trig(1000, 4000, 0)
p.set_adc_trig(0, 200)
while 1:

x = p.read_block(400, 20, 0)
p.plot_data(x)

Connect PWG to CH0 and run this code. Run it again after commenting line 3 instead of line
4 and observe the change in the stability of the trace.

20

2.5.5.2 enable_wait_high, enable_wait_low

PROTOTYPE

None enable_wait_high(int digin)
None enable_wait_low(int digin)

DESCRIPTION
A block_read or multi_read_block called after invoking this will wait for the speci�ed

digital input socket to go HIGH / LOW before starting digitization. If that does not happen,
a timeout error will happen and the read_block() will return a None.

USAGE

p.enable_wait_high(0)
p.enable_wait_low(0)

EXAMPLE

p.enable_wait_low(0)
p.enable_wait_high(2)
x = p.read_block(200,20,0)

The �rst call to wait for a LOW on D0 is reset by the second call and the read_block waits only
for the digital input D2 to go HIGH. An example to capture a transient waveform is explained
below.

Connect a loudspeaker between the input of the non-inverting ampli�er and GND. Set the
gain resistor to 100 Ω. Connect the output of the ampli�er to CH0 through the level shifter.
Connect it to Digital Input D0 through a 1KΩ resistor. Run the following code and immediately
tap the loudspeaker lightly.

p.enable_wait_high(0)
p.select_adc(0)
x = p.read_block(400,20,0)

The read_block() will wait until D0 goes high. The electrical signal from the loudspeaker will
make this and the digitization will start from that point.

2.5.5.3 disable_wait

PROTOTYPE

None disable_wait()

DESCRIPTION
This function will cancel the e�ect of calling enable_wait_low or enable_wait_high.

USAGE

disable_wait()

21

2.5.5.4 enable_set_high, enable_set_low

PROTOTYPE

None enable_set_high(int digout)

None enable_set_low(int digout)

DESCRIPTION
In some applications, it would be necessary to make a digital output socket go high/low

before digitization starts. It is ofcourse possible to do this by �rst calling write_outputs and
then starting digitization - but the in-between delay may not be acceptable in some applications.
This function, when called with a digital output socket number as argument, makes a subsequent
ADC block digitization function set/clear the socket before it begins the digitization process.
Action can be de�ned on only one digital output at a time.

USAGE

p.enable_set_high(0)
p.enable_set_low(1)

EXAMPLE

Capturing the voltage across a capacitor while charging / discharging is a typical application
of this feature. Connect a 1uF capacitor between CH0 and GND. Connect a 1KΩ resistor from
digital output D3 to CH0 and run the following code.

p.write_outputs(0)
time.sleep(1)
p.enable_set_high(3)
x = p.read_block(200, 20)
p.plot(x)
raw_input() # wait until a key is pressed

Due to the third line, D3 is taken to HIGH just before digitizing the voltage on CH0. The
voltage at CH0 will follow it to 5V exponentially.

2.5.5.5 enable_pulse_high, enable_pulse_low

PROTOTYPE

None enable_pulse_high(int digout)

None enable_pulse_low(int digout)

22

DESCRIPTION
In some applications, it would be useful to send a Pulse on a digital output before digitization

starts. The enable_pulse_high() maks the spe�cied output HIGH for some duration and then
makes it LOW. The duration is set by the set_pulse_width() function. The calling program
should make sure that the socket is set to LOW before calling read_block, else a HIGH to
LOW transition will result instead of a pulse. The enable_pulse_low() takes the output LOW
and then HIGH after some duration.

Pulse action can be de�ned on only one digital output at a time.

USAGE

p.enable_pulse_high(0)
p.enable_pulse_low(1)

EXAMPLE

This function can be used to capture a waveform that is triggered by an input signal. For
example, connect the digital output D3 to the input of a IC555 mono-shot circuit and connect
the 555 output to CH0. Set the mono-shot delay to around a millisecond and run the following
code.

p.write_outputs(8)
p.set_pulse_width(1)
p.set_pulse_polarity(1) # LOW TRUE pulse
p.enable_pulse_low(3)
x = p.read_block(300, 10)
p.plot(x)
raw_input() # wait until a key is pressed

2.5.5.6 disable_set

PROTOTYPE

None disable_set()

DESCRIPTION
This function cancels the e�ect of enable_set and enable_pulse calls mentioned above.

EXAMPLE

p.disable_set()

2.6 Waveform Generation and Frequency Counter
Phoenix can generate waveforms and measure the frequency of an input signal in several dif-
ferent ways as explained below.

23

2.6.1 Programmable Waveform Generator (PWG)

The socket marked as 'PWG' can be programmed to generate a square wave. The voltage
level swings between zero and �ve volts. The frequency can be set to values from 15 Hz to 4
MHz. However, all intermediate values are not possible since the frequencies are generated by
dividing the 8 MHz clock frequency and comparing with set point registers.

2.6.1.1 set_frequency

PROTOTYPE

float set_frequency(float freq)

DESCRIPTION
The function generates a square waveform, having 50% duty cycle, on the PWG socket

of the Phoenix box whose frequency is `n' Hz. The frequency can vary from 15Hz to 4MHz.
We may not get the exact frequency which we have speci�ed, only something close to it. The
function returns the actual frequency set in Hz. Note that waveform generation is done purely
in hardware - the Phoenix box can perform some other action while the waveform is being
generated.

The DAC unit, explained later, should not be used while PWG is running - doing so will
result in a 31.25 KHz waveform whose duty cycle proportional to the value set to the DAC.

USAGE

m = p.set_frequency(1000)

EXAMPLES

print p.set_frequency(1000)
print p.set_frequency(1005)

The �rst line will print '1000.0' but the second line will print '1008.06', that is the possible
frequency just above the requested one.

Connect PWG to CH0 and run the following code to capture the waveform.

p.set_frequency(1000)
x = p.read_block(300,20)
p.plot(x)
raw_input()

24

2.6.2 Arbitrary Waveform Generation
As discussed earlier, the voltage on the DAC socket can be set to any value between 0 to 5V.
Under software control, it is also possible to change this value in a periodic manner to generate
a waveform. The DAC input values required to generate a single cycle of the waveform is
loaded into the memory of the micro-controller and they are send to the DAC one by one.
Note that the DAC is set by periodically triggered interrupt service routines consuming the
processor time. Resuts of block reads issued during arbitrary waveform generation may not be
very accurate.

2.6.2.1 load_wavetable

PROTOTYPE

int load_wavetable(list wavetable)

DESCRIPTION
Loads the wavetable, a list of 100 numbers, to the eeprom memory of the micro-controller.

Returns the number of bytes loaded, less than 100 indicates an error.

EXAMPLE

p.load_wavetable(v)

EXAMPLE

v = []
for k in range(100):

v.append(k)
p.load_wavetable(v)

2.6.2.2 start_wave

PROTOTYPE

�oat start_wave(�oat freq, int external_dac = 0)

DESCRIPTION
Starts the wave generation on the DAC socket or on the external plug-in DAC, using the

loaded wavetable. This function uses the micro-controller interrupts and the maximum fre-
quency is limited to around 150 Hz. It is more useful in the low frequency range where fre-
quencies less than a Hertz need to be generated.

EXAMPLE

p.load_wave(10,0)

25

EXAMPLE

v = []
for k in range(100):

v.append(k)
p.load_wavetable(v)
p.start_wave(20,0) # no external DAC used

2.6.2.3 pulse_d0d1

PROTOTYPE

None pulse_d0d1(�oat freq)

DESCRIPTION
Generates a squarewave on Digital outputs D0 and D1. Only low frequencies are possible.

EXAMPLE

p.pulse_d0d1(20)

2.6.2.4 stop_wave

PROTOTYPE

None stop_wave()

DESCRIPTION
Stops the wave generation on the DAC socket and digital outputs. Done by disabling the

MCU interrupts.

EXAMPLE

p.stop_wave()

2.6.3 measure_frequency
PROTOTYPE

int measure_frequency()

DESCRIPTION
Measure the frequency of the square waveform at the CNTR input. Returns the frequency

in Hz. The input frequency can be from several Hertz to one MHz. Input to CNTR is monitored
for one second and the number of pulses are counted.

EXAMPLE

Connect PWG to CNTR and run the following code

p.set_frequency(500)
print p.measure_frequency()

26

2.7 Passive Time Interval Measurements
Digital Inputs and the CMP socket of Phoenix can be used for measuring time intervals with mi-
crosecond resolution. The time between two level transitions can be measured. The transitions
de�ning the start and �nish could be on the same socket or on di�erent socket.

2.7.0.1 r2ftime, f2rtime

PROTOTYPE

int r2ftime(int digin1, int digin2)
int f2rtime(int digin1, int digin2)

DESCRIPTION
r2ftime returns delay in microseconds between a rising edge on digin1 and falling edge on

digin2 - the sockets can be the same. socket numbers 0 to 3 indicate digital input sockets D0
to D3 and socket number 4 stands for the CMP input. f2rtime() measures time from a falling
edge to a riding edge.

USAGE

p.r2ftime(0, 1)

EXAMPLES

Connect PWG to digital input D0 and run the following code, should print around 500
usecs.

p.set_frequency(1000) # half period = 500 usecs
print p.r2ftime(0,0)

2.7.0.2 r2rtime, f2ftime

PROTOTYPE

int r2rtime(int digin1, int digin2)
int f2ftime(int digin1, int digin2)

DESCRIPTION
r2rtime returns delay in microseconds between a rising edge on digin1 and rising edge on

digin2 - the sockets MUST be distinct. If you want to measure the time between two rising
edges, use multi_r2rtime(). f2ftime() measures the time between two falling edges.

USAGE

p.r2rtime(0, 1)

EXAMPLES

print p.r2rtime(0, 1)

27

2.7.0.3 multi_r2rtime

PROTOTYPE

int multi_r2rtime(int digin, int skipcycles)

DESCRIPTION
Measures time interval between two rising edges of a waveform applied to a digital input

socket (D0 to D3) or CMP socket. If `skipcycles' is zero, period of the waveform is returned.
In general, `skipcycles' number of consecutive rising and falling edges are skipped between the
two rising edges.

USAGE

p.multi_r2rtime(0, 3)

EXAMPLE

Connect PWG to digital input D0 and run the following code.

p.set_frequency(1000)
a = p.multi_r2rtime(0,9) # time for 10 cycles in usecs
frequency = 10.0e6/t10 # in Hz

For a periodic waveform input, the �rst line returns the time for one cycle and the second one
returns the time for 10 cycles (9 rising edges in between skipped). This call can be used for
frequency measurement. The accuracy can be improved by measuring larges number of cycles.

2.7.0.4 pendulum_period

PROTOTYPE

int pendulum_period(int digin)

DESCRIPTION
This is equivalent to multi_r2r() with one cycle skipped. Some software delay is added to

get rid of the noise present at the level transitions.

2.8 Active Time Interval Measurements
During some experiments, we need to initiate some action and measure the time interval to the
result of it. The actions are initiated by setting, clearing or by sending pulses on the Digital
Outputs. The results will generate voltage transitions on Digital Inputs or on CMP.

28

2.8.0.5 set2rtime, set2ftime, clr2rtime, clr2ftime

PROTOTYPE

int set2rtime(digout, digin)

(remaining functions have similar prototypes)

DESCRIPTION
These functions SET/CLEAR a digital output socket speci�ed by `digout' and wait for the

digital input (or analog comparator) socket speci�ed by `digin' to go HIGH /LOW.

USAGE

p.set2rtime(0, 1)

2.8.0.6 pulse2rtime, pulse2ftime

PROTOTYPE

int pulse2rtime(int digout, digin)
int pulse2rtime(int digout, digin)

DESCRIPTION
Sends out a single pulse on a Digital Output and waits for a rising/falling edge on a Digital

Input or CMP. The duration and the polarity of the pulse is set by set_pulse_width() and
set_pulse_polarity() functions. On powerup the width is 13 microseconds and polarity is
positive (voltage goes from 0V to 5V and comes back to 0V). The initial level of 'digout'
should be set according to the polarity setting. If the polarity is LOW TRUE, the level must
be set high beforehand and it should be set low for HIGH TRUE pulse.

USAGE

p.pulse2rtime(0, 0)

EXAMPLE

p.set_pulse_width(1)
p.set_pulse_polarity(1)
print p.pulse2rtime(0, 1)

29

2.8.0.7 set_pulse_width

PROTOTYPE

None set_pulse_width(int width)

DESCRIPTION
Sets the pulse width, in microseconds, to be used by the pulse2ftime(), pulse2rtime() and

pulse_out() functions.

USAGE

p.set_pulse_width(10)

2.8.0.8 set_pulse_polarity

PROTOTYPE

None set_pulse_polarity(int pol)

DESCRIPTION
Sets the pulse polarity to be used by the pulse2ftime(), pulse2rtime() and pulse_out()

functions. pol = 0 means a HIGH TRUE pulse and pol=1 means a LOW TRUE pulse.

USAGE

p.set_pulse_polarity(1)

2.9 Histogram Generation
A level change on the CMP socket of Phoenix can trigger an interrupt service routine. This
feature is used by the accessory for Radiation Detection and Analysis. When a charged particle
or gamma ray photon is incident on the radiation detector, it produces a voltage pulse whose
amplitude is proportional to the energy of incident radiation. This pulse is ampli�ed and given
to the ADC CH0 input. A logical pulse is given to the CMP socket if the voltage level is above
the noise threshold. Every pulse on CMP runs a program to digitize the voltage present at CH0
and make a 256 channel histogram using that data. Each channel is of 2 byte size and can hold
upto 65535 counts. If any of the channels read this level, the histogramming is automatically
stopped to avoid over�ow. Read block calls should not be issued while collecting histogram
since the same bu�er area is used for storing the data.

The histogramming feature is controlled by the functions explained below.

30

2.9.1 start_hist
PROTOTYPE

None start_hist()

DESCRIPTION
Enable the CMP interrupts to start histogramming.

USAGE

p.start_hist()

2.9.2 stop_hist
PROTOTYPE

None stop_hist()

DESCRIPTION
Disable the CMP interrupts to stop histogramming.

USAGE
p.stop_hist()

2.9.3 clear_hist
PROTOTYPE

None clear_hist()

DESCRIPTION
Clear the 512 byte histogram bu�er in the micro-controller

USAGE

p.clear_hist()

2.9.4 read_hist
PROTOTYPE

None read_hist()

DESCRIPTION
Returns the 256 element (2 byte) histogram data.

31

USAGE

v= p.read_hist()

EXAMPLE

To test this feature, connect PWG to CMP using a cable. Connect the level shifter output
(will be at 2.5 V when the input is not connected) to CH0. Run the following program and
plot it using 'xmgrace hist.dat' .

import phm, time
p=phm.phm()
p.set_frequency(1000)
p.clear_hist()
p.start_hist()
time.sleep(1)
p.stop_hist()
v = p.read_hist()
f = open('hist.dat','w')
for k in v:

ss = '%d %d\n'%(k[0], k[1])
f.write(ss)

2.10 Serial Periferal Interface (SPI) Modules
There are several devices like memory chips, high resolution ADCs, DACs etc. that can be
accessed using the SPI protocol. The SPI uses three lines (CLOCK, DATA OUT and DATA
IN) for commmunication. There will be one Chip Select signal also for each SPI slave device
connected. Phoenix implements a Software based SPI communication, where the Soclets CH3,
CH2 and CH1 are used as CLOCK, DATA OUT and DATA IN respectively. The Digital
Output D3 is used as Chip Select of the ADC, D2 for the DAC and D1 for Serial EEPROM.

Library functions are available to access the ADC and DAC plug-in modules already de-
veloped. SPI functions are also accessible from Python library so that new circuits can be
incorporated without changing the code at the micro-controller side.

2.10.1 Raw SPI Functions

These functions are useful for testing new SPI devices. Some SPI devices require the SCLK to
be HIGH during CS is enabled, they are handled by the _bar functions.

32

2.10.1.1 chip_enable , chip_enable_bar

PROTOTYPE

None chip_enable(int device)

DESCRIPTION
Enable the selected SPI device by pulling the CS pin LOW. Values 0, 1, 2 selcts the devices

connected to D3, D2 and D1 respectively. Some SPI devices require the SCLK to be HIGH
while taking CS LOW, we need to call chip_enable_bar() for them.

USAGE

chip_enable(1) # Selects the SPI whose CS is from Socket D2

EXAMPLE

chip_enable_bar(0) # device on D3

2.10.1.2 chip_disable

PROTOTYPE

None chip_disable()

DESCRIPTION
Disable all SPI devices by taking the CS pins (digital outputs D3, D2 and D1) HIGH.

USAGE

chip_disable()

2.10.1.3 spi_push, spi_push_bar

PROTOTYPE

None spi_push(int data)

DESCRIPTION
Sends the 8 bit number to the currently selected SPI device.

USAGE

spi_push(255)

EXAMPLE

chip_enable(1) # selcted the DAC on D2
data = 1000
spi_push((data > > 8) & 255) # push high byte
spi_push(data & 255) # then low byte
chip_disable()

33

2.10.1.4 spi_pull, spi_pull_bar

PROTOTYPE

int spi_pull()

DESCRIPTION
Reads an 8 bit number from the currently selected SPI device.

USAGE

dat = spi_pull()

EXAMPLE

chip_enable(0) # selcted the ADC on D3
cmd = 64 + 15
spi_push(cmd) # push command
print spi_pull() # print ADC ID register
chip_disable()

2.10.2 High Resolution ADC / DAC module
(picture)

The AD/DA card has an 8 channel 24 bit ADC and a single channel 16 bit DAC. The
circuit is optically isolated from Phoenix and powered by +/-12V DC supply. The software is
similar to that of the built-in ADC. The maximum input voltage range of the ADC is from 0 to
2.5V, with a resolution of few microvolts. This is suitable for measuring the output of various
sensors without any ampli�cation. The input range can be reduced down to 20 mV to do more
accurate measurements.

2.10.2.1 hr_set_voltage

PROTOTYPE

None hr_set_voltage(float mv)

DESCRIPTION
Sets the output of the Serial DAC from 0 to 2500 mV. Minimum stepsize is 38.1 microvolts.

USAGE

hr_set_voltage(500.23)

EXAMPLE

hr_set_voltage(100.0)

34

2.10.2.2 hr_select_adc

PROTOTYPE

None hr_select_adc(int chan)

DESCRIPTION
Selects any channel from 0 to 7. When di�erential inputs are given, channel numbers from

8 to 11 are used. The selected channel is used for subsequent digitizations.

USAGE

hr_select_adc(0) # selects the first channel

EXAMPLE

hr_select_adc(8) # select CH0 and CH1 as differential Input

2.10.2.3 hr_get_voltage

PROTOTYPE

list hr_get_voltage()

DESCRIPTION
Reads the analog voltage on the current ADC channel and returns a tuple. First element

of the tuple is the PC time-stamp and the second element is the voltage in milli-volts. The
timestamp is required for plotting slowly varying parameters as a function of time.

USAGE

res = p.hr_get_voltage()

EXAMPLES
Connect Serial DAC to Serial ADC CH0 using a piece of wire and run the following program

several times. The result will be �uctuate in the microvolts range.

p.hr_set_voltage(500.0)
p.hr_select_adc(0)
print p.hr_get_voltage()[1] # print voltage only

35

2.10.2.4 hr_select_range

PROTOTYPE

None hr_select_range(int ran)

DESCRIPTION
Set the fullscale range for the currently selected channel. Range can be set from 0 to 7.

The minimum setting for range (ran = 0) is 20 mV and the maximum range is 2.56V (ran =
7) . The voltage ranges in millivolts are [20, 40, 80, 160, 320, 640, 1280, 2560]. By default the
range is set to 2.56V.

USAGE

hr_select_range(0) # selects 20 mV total range.

EXAMPLE

hr_select_range(7) # select 2.56V range

2.10.2.5 hr_internal_cal

PROTOTYPE

list hr_internal_cal(int ran)

DESCRIPTION
Does an internal calibration of the speci�ed channel and returns the OFFSET and GAIN

coe�cients. As such there is no need of calibration if the temperature is near 250 .

USAGE

print hr_internal_cal(0) # print OFFSET and GAIN of channel 0

2.10.2.6 hr_external_cal

PROTOTYPE

list hr_external_cal(int zero_or_fs)

DESCRIPTION
A system calibration can be performed by connecting the zero and full scale voltages exter-

nally. Connect the external Zero Level and call this function with 'zero_or_fs' set to 0. Then
connect the full scale voltage and call the function with 'zero_or_fs' = 1. Calibration is done
for the current channel.

USAGE

hr_external_cal(0) # Connect Zero Level to the input
print hr_external_cal(1) # Connect Full Scale Voltage to the input

36

2.10.3 Serial EEPROM
The Serial EEPROM module uses AT25HP512 eeprom with 64 kbytes memory and SPI inter-
face. This can be used for data recording applications, without the PC. The SPI connections
are same as explained above. The Digital Output D1 is the Chipselect for EEPROM. The
function calls to read/write the SEEPROM are explained below.

2.10.3.1 seeprom_read

PROTOTYPE

print read_seeprom(int addr, int nbytes)

DESCRIPTION
Reads data from the Serial EEPROM plugin module. The starting address and the number

of bytes to be read are speci�ed. Maximum number of bytes that can be read in a single call
is 256. Data is returned in a list.

USAGE

v = p.seeprom_read(2000, 256)

2.10.3.2 seeprom_verify

PROTOTYPE
list seeprom_verify(int blocknum, list data)

DESCRIPTION

This function is for checking the Serial EEPROM plugin memory. We are writing data to
SEEPROM in 128 byte blocks. The �rst argument is the block number (from 0 to 511 in a
64K chip) and the second is a list containing the data. The data provided is �rst loaded in to
the internal EEPROM and then copied to the SEEPROM plugin. Then it is read back and
returned. If everything is �ne the retunred data must be the same as the one written.

USAGE

v = p.seeprom_verify(0, x)

EXAMPLE

x = range(128) # makes 128 element list
v = p.seeprom_verify(0, x)
print v

37

2.11 Plotting Functions
Currently Phoenix uses the Tkinter graphics toolkit for doing graphics. Tkinter provides the
basic drawing routines on its Canvas Widget. Phoenix library contains some routines that plots
data returned by Phoenix, using Tkinter module.

2.11.1 plot
PROTOTYPE

None plot(data, width=400, height=300, parent=None)

DESCRIPTION
Plots the data returned by read_block and multi_read_block. Provides grid, window

resizing and coordinate measurement facilities, using mouse. Any previous plot existing on the
window will be deleted.

USAGE

p.plot(v) # v is a list returned by read_block

EXAMPLE

v = p.read_block(200, 10, 1)
p.plot(v)

2.11.2 plot_data
PROTOTYPE

None plot_data(data, width=400, height=300)

DESCRIPTION
Similar to plot() but with limited features. Use this inside in�nite loops with fast updating,

where plot() function will not work properly.

EXAMPLE

p.plot_data(v)

EXAMPLE

while 1:
v = p.read_block(200, 10, 1)
p.plot_data(v)

38

2.11.3 window
PROTOTYPE

None = window(int width=400, int height=300, Widget parent = None)

DESCRIPTION

The plot() function is the simplest way to plot the data returned by block read functions.
However, if you need a �ner control over the process, open a window and use functions like
line(), box() etc. The function window() creates a Tkinter window on the screen. If no parent
window given, a new root window is created and used as the parent. This window will be used
for subsequent calls to draw objects like line, box etc. If you do not specify the dimensions,
default values will be used.

USAGE

canvas = p.window()

EXAMPLE

p.window()
raw_input() # show it until a key is pressed

2.11.4 set_scale
PROTOTYPE

None = set_scale(float xmin, float ymin, float xmax, float ymax)

DESCRIPTION

For plotting graphs, it is convenient to de�ne a global coordinate system according to the
range of the values to be plotted. The set_scale() function de�nes the upper and lower limits
of the X and Y coordinates we will be plotting. Ones it is set, the conversion from the global
coordinate system to the screen coordinates will be taken care by the drawing functions.

USAGE

p.set_scale(0, -5000, 500, 5000)

EXAMPLE

p.set_scale(0, 100, 0, 5000)

39

2.11.5 line
PROTOTYPE

None = line(list xy, color = 'black')

DESCRIPTION

The line() function accepts a list of XY coordinates to plot a line using it. The coordinate
input is of the form [(x1,y1), (x2,y2),.....]. The color is black by default.

USAGE

line([(0,0), (100,100)],'red')

EXAMPLE

p.window(200,200)
#p.set_scale(0,0,200,200)
p.line([(0,0),(50,100),(100,100)],'blue')
p.line([(0,0),(100,100)],'red')
raw_input()

Run the program to see the output. Uncomment line 2 and run it again to see the e�ect of
set-scale function. The last line is to keep the graph on the screen until a key is pressed.

2.11.6 remove_lines
PROTOTYPE

None = remove_lines()

DESCRIPTION

Delete all the lines plotted on the window.

USAGE

p.remove_lines()

EXAMPLE

p.window(200,200)
p.set_scale(0,0,200,200)
p.line([(0,0), (100,100)],'blue')
raw_input('Press Enter')
p.remove_lines()
raw_input('Press Enter')

40

2.11.7 box
PROTOTYPE

None = box(list xy, color = 'black')

DESCRIPTION

The box() function accepts a list having the XY coordinates of bottom-keft and top-right
corners. The coordinate input is of the form [(x1,y1), (x2,y2)].

USAGE

box([(0,0), (100,100)],'red')

EXAMPLE

p.window(200,200)
p.set_scale(0,0,200,200)
p.box([(0,0), (100,100)],'blue')
raw_input()

2.11.8 remove_boxes
PROTOTYPE

None = remove_boxes()

DESCRIPTION

Delete all the boxes plotted on the window.

USAGE

p.remove_boxes()

2.12 Disk Writing

2.12.1 save_data
PROTOTYPE

None save_data(data, fn='plot.dat')

DESCRIPTION
Save the data returned by the ADC block read functions into a �le in multi column format.

Default �lename is `plot.dat'; this can be overriden.

EXAMPLE

v = p.read_block(200, 10, 1)
p.save_data(v, 'sine.dat')

41

2.13 Plugin LCD Display
Phoenix hardware has a front side socket where an alphanumeric LCD display can be connected.
The alphanumeric LCD display is not used normally, it is meant for developing and debugging
micro-controller program. It is also used when stand-alone devices are made using Phoenix.
However there are few functions to send characters to the LCD display from the PC.

2.13.0.1 init_LCD_display

PROTOTYPE

None init_LCD_display()

DESCRIPTION
Initialize the LCD display by sending the necessary commands to the display module.

USAGE

p.init_LCD_display()

2.13.0.2 write_LCD

PROTOTYPE

None write_LCD(char ch)

DESCRIPTION
Writes a single character to the LCD display at the current cursor position.

USAGE

p.write_LCD_('A')

2.13.0.3 message_LCD

PROTOTYPE

None message_LCD(char message)

DESCRIPTION
Initialize the LCD display and writes a character string (up to 16 characters in length) to

it.

USAGE

p.message_LCD('hello world')

42

Chapter 3

Programs for Simple Experiments

This section is to provide more elaborate, complete working examples for the functions explained
in the previous chapter.

3.0.1 Capacitor Charging/Discharging
Connect the capacitor from CH0 to GND. resistor from D3 to CH0
import phm, time
p=phm.phm()
p.select_adc(0)
p.set_adc_size(2)
p.write_outputs(8)
time.sleep(1)
p.enable_set_low(3)
v=p.read_block(200,25,0)
p.plot_data(v)
p.save_data(v, 'cap.dat')
print 'Press any Key to Exit'
raw_input()

43

